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•Many-body Schrodinger’s equations
• Density functional theory and single particle equation
• Selfconsistent calculation/nonlinear equation/optimization
• Optical properties
• Basis functions for wavefunctions
• Pseudopotentials
• Technical points in planewave calculations



Many body Schrodinger’s equation

Schrodinger’s equation (1930’s): the great result of reductionism !
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All the material science and chemistry is included in this equation !

The challenge: to solve this equation for complex real systems. 
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The famous Einstein formula: E=ħω

Ground state: the lowest E state; Excited state: higher E state.



Many body wavefunctions

Electrons are elementary particles, two electrons are indistinguishable

)......,..()......,..( 11 NijNji rrrrrrrr Ψ=Ψ α

12 =α
1=α , Boson: phonon, photon, W-boson, Higgs-boson, ….

(usually particles which transmit forces)

1−=α , Fermion: electron, proton, neutron, quark,muon, …. 

(usually particles which constitute the matter)

For our case: electron
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Many body wavefunctions
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One example of the antisymmetric wavefunction: Slater determinate
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Φ1(r1)

ΦN(rN)Φ1(rN)
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This is the exact solution for:

),..(),..(}
||||

1
2
1{ 11

,,

2
NN

Ri iji ji
i

i
rrErr

Rr
Z

rr
Ψ=Ψ

−
+

−
+∇− ∑∑∑

The partial differential equation becomes separable 



Another way to look at it: variational methods
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The ground state corresponds to the optimized state Ψ which is 
antisymmetric and normalized. 

So, we can try variational Ψ for whatever expressions we like

variationallinear eigen value
problem

nonlinear problem 
on simplified functionsapproximation

Plug in the Slater determinate for Ψ, we have (Hartree-Fock equation):
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Some concepts and terminologies

Φ1(r1)

ΦN(rN)Φ1(rN)

ΦN(r1)………

………………………

……… N+1

1
2

N

N+2
=Ψ )....( 1 Nrr

EiΦj(r) : single particle orbital

One orbital can only have one electron (2 include spin)
------- Pauli exclusion principle

the N occupied single particle orbitalsΦ1 Φ2 ΦN, ,…

We also have: the unoccupied orbitalsΦN+1 ΦN+2, ,…

Using one of ΦN+1 ΦN+2, ,… to replace one of Φ1 Φ2 ΦN, ,…
the resulting Slater determinant will correspond to one excited state

(band gap)NNgroundexcited EEEE −≈− +1For the lowest excited state: 



Energy breakup
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Exchange energy

Ecorr=Eexact-EHF Whatever left from HF

Coulomb: ~ 40 eV/atomKinetic: ~ 40 eV/atom

Exchange: ~ 20eV/atom Correlation: ~ 4 eV/atom

Typical chemical bond: ~ 2 eV Every term is important
For chemical accuracy, we need: ~ 0.05 eV/atom



Different configurations: CI
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Φj,c(r1)
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SDconf(r1,..rN)=

CI: configuration interaction
i,v
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The number of configuration is exponential, only feasible for a few atom systems.

Judicious selection of configurations: MP2, coupled-cluster, etc

Traditional quantum chemistry approaches



More on variational many-body wavefunctions
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One electron at r will repulse other 
electrons near r due to Coulomb inter.

Correlation effects:

Φ1(r1)

ΦN(rN)Φ1(rN)

ΦN(r1)………

………………………
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Jastrow factor

Unfortunately, cannot break down the following integration. 
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Using Monte-Carlo method to do the integration: variational quantum MC.



Diffusion quantum Monte-Carlo approach
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This looks like a classical diffusion equation with finite temperature
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=−+∇ µ S(r,t) particle density

Using classical Monte-Carlo to simulate the random movements of particles
in a 3N dimension space.

Problem: S is always positive, but ψ has both positive and negative due to 
antisymmetry the famous sign problem !

Φ1(r1)

ΦN(rN)Φ1(rN)

ΦN(r1)………

………………………

………

to divide the 3N space into
positive and negative 
compartments, move articles
within.

Fix nodal approx: use



Another approach: the density matrix method
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Great, reduce the N variable function into a 4 variable function !!

might not be N-representable !Problem: ρ )',;',( 2211 rrrr
•Many necessary conditions to make ρ N-representable 
• The ρ is within some hyperdimension convex cone. 
• Linear programming optimization approach
• Recent work: Z. Zhao, et.al, it can be very accurate, but it is still

very expensive (a few atoms).  
• No known sufficient condition



The density functional theory

NNN drdrrrrrrrrrr ...),...,,(),...,,()( 23213211 ΨΨ= ∫∫ρ

Any single particle ρ(r) is N-representable. 

Can we use ρ as one basic variable to determine all other things ?
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V(r) is one basic variable which determines everything. 

So V  ρ ,     Now, can ρ V ? (ρ uniquely determine V) 

We need to prove: we cannot have V1 ρ, and V2 ρ. 



Density functional theory (continued)

We need to prove: we cannot have V1 ρ, and V2 ρ. 
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Suppose this happens, then V1 Ψ1 ρ  and V2 Ψ2 ρ 

),(),( 2111 Ψ<Ψ VEVE• Since Ψ1 is the variational minimum of V1, so:

drrrVEEdrrrVEE CoulKCoulK )()(][][)()(][][ 122111 ρρ ∫∫ +Ψ+Ψ<+Ψ+Ψ

Eq(1)][][][][ 2211 Ψ+Ψ<Ψ+Ψ CoulKCoulK EEEE

• Since Ψ2 is the variational minimum of V2, so: E ),(),( 1222 Ψ<Ψ VEV

Eq(2)][][][][ 1122 Ψ+Ψ<Ψ+Ψ CoulKCoulK EEEE

Eq(1),(2) contradict with each other, so we cannot have V1 ρ, and V2 ρ

We can also prove, smooth ρ is V-representable (i.e, can find a V ρ)

In summary, V is a functional of ρ, thus everything is a functional of ρ



Kohn-Sham equation and LDA

Ψ[ρ] exists, so:
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Great, change the problem to a fluid-dynamics like problem, just one func. ρ(r)

Problem: DFT proves that Ekin[ρ], Exc[ρ] exist, but they are unknown. 

Many approx. for Ekin[ρ]: Thomas-Fermi, Gradient Expan., Wang-Teter. 

approximate Ekin[ρ] by ∫ drrr i
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L. Sham’s idea:

and 



Kohn-Sham equation and LDA (continued)

Use local density approximation (LDA) for Exc[ρ]: 

∫= drrE xcxc ))((][ ρερ

Find function εxc(ρ) from simple systems: homogeneous electron gas, where
The total energy has been calculated by QMC.  The Perdew-Zunger paper. 

Now, we have the LDA formula:
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The ground state solution is a minimum of ELDA for variational {φi(r)}

The variational minimum condition: (Kohn-Sham equation)

)()()}(
2
1{ 2 rErrV iiiLDA ϕϕ =+∇−

)())(('
|'|
)'()( rVrdr
rr
rrV xcLDA ++
−

= ∫ ρµρ
and:



Selfconsistent calculations
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Planewave expansion of the wavefunction
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Due space representation
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diagonal 
in q space

diagonal 
in real space

Fast Fourier Transformation between
real space ψ(r)  and Fourier space C(q).



A parallel Fast Fourier Transformation code
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EPM calc.

•Specially designed for PW elec. 
structure calculation. 
•Work load balance
•Memory balance
•Minimum communication

FFT



FFT grids
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∆Ω=Gc1<0.5 Gc2, so:

It doesn’t have the usual 1/h2 discretization error, it is exact!

We are not doing the usual discretization
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Pseudopotentials

The price: need additional nonlocal potential. 
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A few types of eigen value problems

(1) Total energy calculations: need all the occupied states 
(5% of the all lowest eigenstates). Need them inside a 
outer loop

(2) Nonselfconsistent optical property calculations: 
need a few states at the interior of the spectrum. 
One shot calculation. 

(3) Transport problems: a special eigenstate problem, 
need eigenstates under special boundary conditions.



Total energy problem
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(1) The explicit matrix H is only available for very small 
systems (used in 70’s). 

(2) For large systems, Hψ is done using FFT (due space
representation), so iterative methods are used. 

(3) Current methods: 
CG on Grassman’s manifold: ii HMin ψψ

ijji δψψ =Under constraint: 

(4) Band by band algorithm vs all band algorithm



Total energy problem (continue)

(1) Davison’s method vs CG method

(2) Residual minimization method /
direct inversion in the iterative subspace 
(RMM-DIIS)

Using 1−= ll HRφ
and use {φl} to get the minimum residual 

llll HHR ψψψ )( −=

to generate a Krylov subspace {φl}

This by itself is very slow, but subspace diagonalization
saves the algorithm

Doing each band independently, avoid orthogonalization



Total energy problem (continue)

(1) Preconditioning: kinetic energy, diagonal precondition

(2) Lanczos method: can be very fast. 

Long Lanczos iteration (10,000) without explicit orth. 



Total energy calculation (continue)

Lanczos is faster than CG even without precond. 

Challenge: (1) how to use precond. (2) how to restart. 



Total energy calculation (continued)

Wish list for total energy calculation algorithms

(1) Iterative method based on Hψ

(2) Preconditioning, if possible. 

(3) Restart from previously converged states. 

(4) Share Krylov space vectors among eigenstates
(Lanczos type methods).  

(5) Avoid frequent orthogonalization among the 
eigenstates.



Interior eigenstate problem

The challenge:  H is not explicitly known, cannot be inverted

Have to rely on iterative methods. 

Typically there is a gap in the spectrum, only interested in 
gap edge states. 

E

index of states



Folded Spectrum Method and Escan Code

iiiH ψεψ = irefiirefH ψεεψε 22 )()( −=−



Other methods for interior eigenstates

(1) We can try other methods on (H-Eref)2 , e.g, Lanczos

(2) Outer / inner loop methods: inner loop try to 
approximately invert Hy=x.  Does it worth it?
How do they compare to direct, one-loop method? 

PN(E)

(3) Jacobi-Davison method.  E

(4) Challenge: current method works on (H-Eref)2 , the 
condition number is much worse than H.  Can any 
interior eigenstate method be as easy as working 
on H? 

(5) Is interior eigenstate problem intrinsically hard for
interative methods. randomNi HP φψ )(=



Other ideas
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Using 3D 7 points finite difference formula for ∇2, 
H is a sparse matrix in real space grid presentation. 
The resulting H’ can be factorized directly using 
~ 200 Ngrid.  Then H’y=x can be solved in a linear scaling.  

This can be used as a preconditioning, or help to solve
the original Hy=x. 

Some problems: there are nonlocal parts in V(r) , thus
it is not really diagonal in real space. 



The transport problems
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for a given E inside a real space domain, 
outside this domain (or at the boundary), we have
special boundary conditions, e.g: 
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